関西医科大学iPS・幹細胞再生医学講座

教室員

HOME教室員 > 松岡 由和
松岡 由和
iPS・幹細胞再生医学講座 講師
/幹細胞再生医学(藤岡)グループ
理学博士
松岡 由和
Yoshikazu Matsuoka
学歴
  • 平成14年3月 関西大学工学部生物工学科 卒業
  • 平成19年3月 大阪大学大学院生命機能研究科 単位取得退学
職歴
  • 平成19年 関西医科大学 COE研究員
  • 平成20年 関西医科大学 基礎医学振興奨励金特別研究員
  • 平成21年 大阪大学医学系研究科 保健学科専攻 特任研究員
  • 平成22年 関西医科大学医学部衛生学講座 助教
  • 平成22年 関西医科大学医学部iPS・幹細胞再生医学講座 助教
  • 令和6年 関西医科大学医学部iPS・幹細胞再生医学講座 講師
学位
(取得大学、年)
平成20年 大阪大学 博士(理学)
E-mail matsuyos*hirakata.kmu.ac.jp
お手数ですが、*を@に変えて下さい
研究テーマ 幹細胞生物学
研究のキーワード 造血幹細胞、間葉系幹細胞、機械学習
主要業績
  • Okano M, Yasuda M, Shimomura Matsuoka Y, Shirouzu Y, Fujioka T, Kyo M, Tsuji S, Kaneko K, Hitomi H,: Citrin-deficient patient-derived induced pluripotent stem cells as a pathological liver model for congenital urea cycle disordersMol Genet Metab Rep 2024;40:101096. [Link]
  • Araki-Sasaki K, Kanagawa T, Matsuoka Y.: HCE-T cells express cornea-specific differentiation marker, PAX6 protein. Graefes Arch Clin Exp Ophthalmol 2022;260:4015-4017.[Link]
  • Matsuoka Y, Nakatsuka R, Fujioka T.: Automatic Discrimination of Human Hematopoietic Tumor Cell Lines using a Combination of Imaging Flow Cytometry and Convolutional Neural Network. Human Cell 2021;34(3):1021.[Link]
  • 総説:松岡 由和.: イメージサイトメトリーと機械学習による明視野像を用いた細胞の自動判別. Cytometry Research, 2020;30(1):15.[Link]
  • Matsuoka Y, Sumide K, Sonoda Y. One-year Observation of the SCID-repopulating Cell Activities of Human Cord Blood-derived CD34-positive and -negative Hematopoietic Stem Cells. Stem Cell Reviews and Reports, 15;459-461 2019.[Link].
  • 総説: 松岡 由和、薗田 精昭。ヒト臍帯血由来造血幹細胞の陽性分子マーカーとしてのGPI-80抗原の有用性。Cytometry Research, 28 (2):13-17, 2018.
  • Preprint: Matsuoka Y, Nakatsuka R, Fujioka T. Automatic Single-Cell Discrimination by Cellular Appearance using Convolutional Neural Network. bioRxiv, doi: https://doi.org/10.1101/446823
  • Matsuoka Y, Nakamura F, Hatanaka K, Fujioka T, Otani S, Kimura T, Fujimura Y, Asano H and Sonoda Y, The number of CD34+CD133+ hematopoietic stem cell residing in umbilical cord blood (UCB) units is not correlated with the number of total nucreated cells and CD34+ cells: A possible new indicator for quality evaluation of UCB units., International Journal of Hematology, DOI: 10.1007/s12185-018-2502-7 ,2018
  • Sumide K, Matsuoka Y, Kawamura H, Nakatsuka R, Fujioka T, Asano H, Takihara Y and Sonoda Y. A Rivised Road Map for the Comittment of Human Cord Blood CD34-negative Hematopoietic Stem Cells, Nature Communications, 9(1):2202,2018
  • Kawamura H, Nakatsuka R, Matsuoka Y, Sumide K, Fujioka T, Asano H, Iida H and Sonoda Y. TGF-β Signaling Accelerates Senescence of Human Bone-Derived CD271 and SSEA-4 Double-Positive Mesenchymal Stromal Cells, Stem Cell Reports, 10(3):920-32,2018
  • Abe T*, Matsuoka Y*, Nagao Y, Sonoda Y, Hanazono Y. CD34-negative hematopoietic stem cells show distinct expression profiles of homing molecules that limit engraftment in mice and sheep. Int J Hematol, 106:631-637, 2017. *These authors contributed equally to this work.
  • Matsuoka Y, Takahashi M, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, Sonoda Y. CD34 Antigen and the MPL Receptor Expression Defines A Novel Class Of Human Cord Blood-Derived Primitive Hematopoietic Stem Cells. Cell Transplant, 26:1043-1058, 2017.
  • Matsuoka Y, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, Sonoda Y. GPI-80 Expression Highly Purifies Human Cord Blood-Derived Primitive CD34-Negative Hematopoietic Stem Cells. Blood 128:2258-2260, 2016.
  • Nakatsuka R, Iwaki R, Matsuoka Y, Sumide K, Kawamura H, Fujioka T, Sasaki Y, Uemura Y, Asano H, Kwon A-Hon, Sonoda Y. Identification and Characterization of Lineage-CD45-Sca-1+ VSEL Phenotypic Cells Residing in Adult Mouse Bone Tissue. Stem Cells Dev, 25:27-42, 2016.
  • Matsuoka Y, Sumide K, Kawamura H, Nakatsuka R, Fujioka T, Sasaki Y, Sonoda Y. Human cord blood-derived primitive CD34-negative hematopoietic stem cells (HSCs) are myeloid-biased long-term repopulating HSCs. Blood Cancer J, 5:e290, 2015.
  • Matsuoka Y, Nakatsuka R, Sumide K, Kawamura H, Takahashi M, Fujioka T, Uemura Y, Asano H, Sasaki Y, Inoue M, Ogawa H, Takahashi T, Hino M, Sonoda Y. Prospectively isolated human bone marrow cell-derived MSCs support primitive human CD34-negative hematopoietic stem cells. Stem Cells, 33:1554-1565, 2015.
  • Zhang R, Liu T, Senju S, Haruta M, Hirosawa N, Suzuki M, Tatsumi M, Ueda N, Maki H, Nakatsuka R, Matsuoka Y, Sasaki Y, Tsuzuki S, Nakanishi H, Araki R, Abe M, Akatsuka Y, Sakamoto Y, Sonoda Y, Nishimura Y, Kuzushima K, Uemura Y. Generation of mouse pluripotent stem cell-derived proliferating myeloid cells as an unlimited source of functional antigen-presenting cells. Cancer Immunol Res, 3:668-677, 2015.
  • Nakatsuka R, Matsuoka Y, Uemura Y, Sumide K., Iwaki R, Takahashi M, Fujioka T, Sasaki Y, Sonoda Y. Mouse dental pulp stem cells support human umbilical cord blood-derived hematopoietic stem/progenitor cells in vitro. Cell Transplant, 24:97-113, 2015.
  • Takahashi M, Matsuoka Y, Sumide K, Nakatsuka R, FujiokaT, Kohno H, Sasaki Y, Matsui K, Asano H, Kaneko K, Sonoda Y. CD133 is a Positive Marker for a Distinct Class of Primitive Human Cord Blood-derived CD34–negative Hematopoietic Stem Cells. Leukemia,28:1308-1315, 2014.
  • Hosen N, Matsuoka Y, Kishida S, Nakata J, Mizutani Y, Hasegawa K, Mugitani A, Ichihara H, Aoyama Y, Nishida S, Tsuboi A, Fujiki F, Tatsumi N, Nakajima H, Hino M, Kimura T, Yata K, Abe M, Oka Y, Oji Y, Kumanogoh A, Sugiyama H. CD138-negative clonogenic cells are plasma cells but not B cells in some multiple myeloma patients. Leukemia, 26:2135-2141, 2012.
  • Hosen N, Ichihara H, Mugitani A, Aoyama Y, Fukuda Y, Kishida S, Matsuoka Y, Nakajima H, Kawakami M, Yamagami T, Fuji S, Tamaki H, Nakao T, Nishida S, Tsuboi A, Iida S, Hino M, Oka Y, Oji Y, Sugiyama H. CD48 as a novel molecular target for antibody therapy in multiple myeloma. Br J Haematol, 156:213-224, 2012.
  • Matsuoka Y*, Sasaki Y*, Nakatsuka R, Takahashi M, Iwaki R, Uemura Y, Sonoda Y. The low level of c-Kit expression marks deeply quiescent murine hematopoietic stem cells. Stem Cells, 29:1783-1791, 2011. *These authors contributed equally to this work.
  • Ishii M, Matsuoka Y, Sasaki Y, Nakatsuka R, Takahashi M, Nakamoto T, Yasuda K, Matsui K, Asano H, Uemura Y, Tsuji T, Fukuhara S, Sonoda Y. Development of a high-resolution purification method for precise functional characterization of primitive human cord blood-derived CD34-negative SCID-repopulating cells. Exp Hematol, 39:203-213, 2011.
  • Ohira Y, Matsuoka Y, Kawano F, Ogura A, Higo Y, Ohira T, Terada M, Oke Y, Nakai N. Effects of creatine and its analog, β-Guanidinopropionic acid, on the differentiation of and nucleoli in myoblast. Biosci Biotechnol Biochem, 75:1085-1089, 2011.
  • Kimura T, Kohno H, Matsuoka Y, Murakami M, Nakatsuka R, Hase M, Yasuda K, Uemura Y, Sasaki Y, Fukuhara S, Sonoda Y. CXCL8 enhances the angiogenic activity of umbilical cord blood-derived outgrowth endothelial cells in vitro. Cell Bio Int, 35:201-208, 2011.
  • Kimura T, Kohno H, Matsuoka Y, Nakatsuka R, Sasaki Y, Fukuhara S, Sonoda Y. CD16 antigen is a positive marker of peripheral blood-derived early endothelial progenitor cells. Int J Hematol, 93:123-125, 2011.
  • Nakatsuka R, Nozaki T, Uemura Y, Matsuoka Y, Sasaki Y, Shinohara M, Ohura K, Sonoda Y. 5-Aza-2'-deoxycytidine treatment induces skeletal myogenic differentiation of mouse dental pulp stem cells. Arch Oral Biol, 55:350-357, 2010.
  • Kimura T, Matsuoka Y, Murakami M, Kimura T, Takahashi M, Nakamoto T, Yasuda K, Matsui K, Kobayashi K, Imai S, Asano H, Nakatsuka R, Uemura Y, Sasaki Y, Sonoda Y. In vivo dynamics of human cord blood-derived CD34- SCID-repopulating cells using intra-bone marrow injection. Leukemia, 24:162-168, 2010.
  • Sasaki Y, Matsuoka Y, Hase M, Toyohara T, Murakami M, Takahashi M, Nakatsuka R, Uemura Y, Sonoda Y.Marginal expression of CXCR4 on c-kit+Sca-1+Lineage- hematopoietic stem/progenitor cells. Int J Hematol, 90:553-560, 2009.
  • Uemura Y, Liu TY, Narita Y, Suzuki M, Nakatsuka R, Araki T, Matsumoto M, Iwai LK, Hirosawa N, Matsuoka Y, Murakami M, Kimura T, Hase M, Kohno H, Sasaki Y, Ichihara Y, Ishihara O, Kikuchi H, Sakamoto Y, Jiao SC, Senju S, Sonoda Y. Cytokine-dependent modification of IL-12p70 and IL-23 balance in dendritic cells by ligand activation of Valpha24 invariant NKT cells. J Immunol, 183:201-208, 2009.
  • Matsuoka Y, Inoue A. Controlled differentiation of myoblast cells into fast and slow muscle fibers. Cell Tissue Res, 332:123-132, 2008.
  • Lan YB, Terada M, Higo Y, Kawano F, Matsuoka Y, Wang XD, Nakai N, Ohira Y. Effects of mechanical and/or neural stimulation on the properties of soleus muscle fibers in mdx mice. Jpn J Aero Environ Med, 44:19-29, 2007.
  • Kawano F, Matsuoka Y, Oke Y, Higo Y, Terada M, Wang XD, Nakai N, Fukuda H, Ohmi S, Ohira Y. Role(s) of nucleoli, phosphorylation of ribosomal protein S6 and/or HSP27 in the regulation of muscle mass. Am J Physiol Cell Physiol, 293: C35-C44, 2007.
  • Ohira Y, Yoshinaga , Ohara M, Kawano F, Wang XD, Higo Y, Terada M, Matsuoka Y, Roy RR, Edgerton VR. The role of neural and mechanical influences in maintaining normal fast and slow muscle properties. Cells Tissues Organs, 182: 129-142, 2006.
  • Wang XD, Kawano F, Matsuoka Y, Fukunaga K, Terada M, Sudoh M, Ishihara A, Ohira Y. Mechanical load-dependent regulation of satellite cell and fiber size in rat soleus muscle. Am J Physiol Cell Physiol, 290:C981-C989, 2006.
加入学会
  • 日本血液学会
  • 日本造血細胞移植学会
  • 日本サイトメトリー学会
  • 日本癌学会
更新日 2024年6月7日

教室員一覧へ